If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x^2-20x+25=0
a = -5; b = -20; c = +25;
Δ = b2-4ac
Δ = -202-4·(-5)·25
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-30}{2*-5}=\frac{-10}{-10} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+30}{2*-5}=\frac{50}{-10} =-5 $
| 6-2p=-p | | 1/2m+3=-15 | | -8x-16=-8x-8x | | 3-9x=31-(9x+28) | | 1+7d=8d+10 | | (x+3)(x)(x-3)=440 | | 126+3y=2(4y+8)+2(4y+3) | | X^4-12x^2-16x-48=0 | | 1/2x+4=-14 | | -10+7s=8s | | 5x^2=25-20x | | 2p-4=18 | | 5q=-10+4q | | 3x+4x=114 | | 4p-6=7p | | 2(x-2)+x(x+3)=-x+3 | | -5x-5+3x-7=0 | | 2(7+3b)=-5(-2b+2) | | -112=4-4(5k-6) | | 212+14x=2(17x+19)+2(17x-21) | | 19=8x+1x-6 | | -3a+5a=4 | | 7(-p-19)+8p=-18p | | (-3/2)x^2+(3/2)x+3=0 | | 28-(x-5)=-4 | | -3/2x^2+3/2x+3=0 | | -8=-7=x | | -117-9x=-19x+13 | | x^2+32=4x | | -5(4x+10)=210 | | (4/5)^x=64/125 | | 9x-39=6x-9 |